40 research outputs found

    Towards the routine use of in silico screenings for drug discovery using metabolic modelling

    Get PDF
    Currently, the development of new effective drugs for cancer therapy is not only hindered by development costs, drug efficacy, and drug safety but also by the rapid occurrence of drug resistance in cancer. Hence, new tools are needed to study the underlying mechanisms in cancer. Here, we discuss the current use of metabolic modelling approaches to identify cancer-specific metabolism and find possible new drug targets and drugs for repurposing. Furthermore, we list valuable resources that are needed for the reconstruction of cancer-specific models by integrating various available datasets with genome-scale metabolic reconstructions using model-building algorithms. We also discuss how new drug targets can be determined by using gene essentiality analysis, an in silico method to predict essential genes in a given condition such as cancer and how synthetic lethality studies could greatly benefit cancer patients by suggesting drug combinations with reduced side effects

    Integration of external biomass reactions into existing metabolic models

    Get PDF
    Currently, seven biomass objective functions have been defined in human metabolic reconstructions. The integration of published biomass reactions into alternative models can contribute to the prediction power of the model. Thus, in this work, we present a workflow to integrate reactions and biomass functions originating from several genome-scale reconstructions into models other than their home models. Additionally, a benchmark to identify the biomass that confers the highest prediction accuracy in terms of gene essentiality and growth predictions is provided

    scFASTCORMICS: A Contextualization Algorithm to Reconstruct Metabolic Multi-Cell Population Models from Single-Cell RNAseq Data

    Get PDF
    Tumours are composed of various cancer cell populations with different mutation profiles, phenotypes and metabolism that cause them to react to drugs in diverse manners. Increasing the resolution of metabolic models based on single-cell expression data will provide deeper insight into such metabolic differences and improve the predictive power of the models. scFASTCORMICS is a network contextualization algorithm that builds multi-cell population genome-scale models from single-cell RNAseq data. The models contain a subnetwork for each cell population in a tumour, allowing to capture metabolic variations between these clusters. The subnetworks are connected by a union compartment that permits to simulate metabolite exchanges between cell populations in the microenvironment. scFASTCORMICS uses Pareto optimization to simultaneously maximise the compactness, completeness and specificity of the reconstructed metabolic models. scFASTCORMICS is implemented in MATLAB and requires the installation of the COBRA toolbox, rFASTCORMICS and the IBM CPLEX solver

    Bruceine D Identified as a Drug Candidate against Breast Cancer by a Novel Drug Selection Pipeline and Cell Viability Assay.

    Get PDF
    The multi-target effects of natural products allow us to fight complex diseases like cancer on multiple fronts. Unlike docking techniques, network-based approaches such as genome-scale metabolic modelling can capture multi-target effects. However, the incompleteness of natural product target information reduces the prediction accuracy of in silico gene knockout strategies. Here, we present a drug selection workflow based on context-specific genome-scale metabolic models, built from the expression data of cancer cells treated with natural products, to predict cell viability. The workflow comprises four steps: first, in silico single-drug and drug combination predictions; second, the assessment of the effects of natural products on cancer metabolism via the computation of a dissimilarity score between the treated and control models; third, the identification of natural products with similar effects to the approved drugs; and fourth, the identification of drugs with the predicted effects in pathways of interest, such as the androgen and estrogen pathway. Out of the initial 101 natural products, nine candidates were tested in a 2D cell viability assay. Bruceine D, emodin, and scutellarein showed a dose-dependent inhibition of MCF-7 and Hs 578T cell proliferation with IC(50) values between 0.7 to 65 μM, depending on the drug and cell line. Bruceine D, extracted from Brucea javanica seeds, showed the highest potency

    Review of Current Human Genome-Scale Metabolic Models for Brain Cancer and Neurodegenerative Diseases.

    Get PDF
    Brain disorders represent 32% of the global disease burden, with 169 million Europeans affected. Constraint-based metabolic modelling and other approaches have been applied to predict new treatments for these and other diseases. Many recent studies focused on enhancing, among others, drug predictions by generating generic metabolic models of brain cells and on the contextualisation of the genome-scale metabolic models with expression data. Experimental flux rates were primarily used to constrain or validate the model inputs. Bi-cellular models were reconstructed to study the interaction between different cell types. This review highlights the evolution of genome-scale models for neurodegenerative diseases and glioma. We discuss the advantages and drawbacks of each approach and propose improvements, such as building bi-cellular models, tailoring the biomass formulations for glioma and refinement of the cerebrospinal fluid composition

    Project-based learning course on metabolic network modelling in computational systems biology.

    Get PDF
    Project-based learning (PBL) is a dynamic student-centred teaching method that encourages students to solve real-life problems while fostering engagement and critical thinking. Here, we report on a PBL course on metabolic network modelling that has been running for several years within the Master in Integrated Systems Biology (MISB) at the University of Luxembourg. This 2-week full-time block course comprises an introduction into the core concepts and methods of constraint-based modelling (CBM), applied to toy models and large-scale networks alongside the preparation of individual student projects in week 1 and, in week 2, the presentation and execution of these projects. We describe in detail the schedule and content of the course, exemplary student projects, and reflect on outcomes and lessons learned. PBL requires the full engagement of students and teachers and gives a rewarding teaching experience. The presented course can serve as a role model and inspiration for other similar courses

    The gut microbial metabolite formate exacerbates colorectal cancer progression

    Get PDF
    The gut microbiome is a key player in the immunomodulatory and protumorigenic microenvironment during colorectal cancer (CRC), as different gut-derived bacteria can induce tumour growth. However, the crosstalk between the gut microbiome and the host in relation to tumour cell metabolism remains largely unexplored. Here we show that formate, a metabolite produced by the CRC-associated bacterium Fusobacterium nucleatum, promotes CRC development. We describe molecular signatures linking CRC phenotypes with Fusobacterium abundance. Cocultures of F. nucleatum with patient-derived CRC cells display protumorigenic effects, along with a metabolic shift towards increased formate secretion and cancer glutamine metabolism. We further show that microbiome-derived formate drives CRC tumour invasion by triggering AhR signalling, while increasing cancer stemness. Finally, F. nucleatum or formate treatment in mice leads to increased tumour incidence or size, and Th17 cell expansion, which can favour proinflammatory profiles. Moving beyond observational studies, we identify formate as a gut-derived oncometabolite that is relevant for CRC progression

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF
    corecore